«

»

Июн 14

В НИТУ «МИСиС» создали материал для «вечной» батарейки

© Иллюстрация РИА Новости . А.ПолянинаНа вложенной картинке обозначены жесткозакрепленные атомы кобальта (Co) и сурьмы (Sb), составляющие кристаллическую решетку интерметаллида кобальт-сурьма. В центре расположен большой атом индия, который не входит в кристаллическую решетку и расположен в её пустоте как «гостевой» атом.

© Иллюстрация РИА Новости . А.Полянина

Сотрудники Центра энергоэффективности НИТУ «МИСиС» разработали экономичный и быстрый способ изготавливать материал, из которого делаются высокоэффективные термоэлектрические генераторы для космических аппаратов. Такой материал способен напрямую преобразовывать тепловую энергию в электрическую. Статья с результатами работы вышла в Journal of Materials Chemistry A.Физики в тысячи раз улучшили процесс превращения тепла в электричество Эффект преобразования тепловой энергии в электрическую обнаружил ещё в 1821 году немецкий физик Томас Зеебек. Однако технологии, позволяющие использовать эффект Зеебека в промышленных масштабах, до сих пор далеки от совершенства. Тем не менее, термоэлектрические материалы уже активно используются в энергетике, холодильных установках, работающие от тепла радиоактивного распада термоэлектрогенераторы установлены на таких всемирно известных космических аппаратах как «Cassini» и «New Horizons». На том же принципе работает электрогенератор марсохода «Curiosity». Кроме того, Есть и более приземленные примеры: например, Также ведутся разработки теплоэлектрогенераторов, способных повысить эффективность различных видов электростанций, есть примеры получения электроэнергии от тепла, передаваемого через элементы выхлопной системы автомобиля.

© НИТУ «МИСиС»Микрофотография кристаллов CoSb3 с включениями индия (масштаб – 10 нанометров в сантиметре)

© НИТУ «МИСиС»Микрофотография кристаллов CoSb3 с включениями индия (масштаб – 10 нанометров в сантиметре)

Полученные в НИТУ «МИСиС» термоэлектрические материалы сочетают в себе два «вида» атомов: жестко закрепленные в узлах кристаллической решётки, что обеспечивает высокую электропроводность, и свободно колеблющиеся, что резко снижает теплопроводность, потому что слабо связанные с кристаллическим каркасом атомы эффективно рассеивают тепло. Такого сочетания удалось добиться за счет создания интерметаллидов, кристаллическая структура которых содержит пустоты. Заполняя их «гостевыми» атомами без нарушения кристаллической решетки, учёные и получают необходимое сочетание свойств.

© НИТУ «МИСиС»Микрофотография кристаллов CoSb3 с включениями индия (масштаб – 5 нанометров в сантиметре)

© НИТУ «МИСиС»Микрофотография кристаллов CoSb3 с включениями индия (масштаб – 5 нанометров в сантиметре)

«Нам удалось решить проблему за счет использования индия в качестве заполнителя и подбора исходного соотношения металлов, которое позволило синтезировать нужный термоэлектрический состав в открытом реакторе, – рассказывает член научной группы, сотрудник Центра энергоэффективности НИТУ «МИСиС» Андрей Воронин. – Благодаря такому подходу мы смогли провести синтез в открытом реакторе всего за две минуты с последующим отжигом получившегося образца в течение 5 часов. Сочетание используемого материала и особенностей процесса синтеза ускорило процесс создания в несколько десятков раз, что также сказывается и на стоимости получения таких материалов. При этом полученные значения термоэлектрической эффективности ZT = 1,5 стали рекордными для скуттерудитов с одним видом «гостевых» атомов».

© НИТУ «МИСиС»Сотрудник Центра энергоэффективности НИТУ «МИСиС» Андрей Воронин на фоне установки электроискрового спекания

© НИТУ «МИСиС»Сотрудник Центра энергоэффективности НИТУ «МИСиС» Андрей Воронин на фоне установки электроискрового спекания

Как говорят авторы новой работы, предложенные ранее схемы получения термоэлектрических материалов, были намного более дорогими и длительными.

Источник: ria.ru

Добавить комментарий